Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án:
$\begin{array}{l}
Dkxd:x \ge 0;x \ne 4\\
a)A = \left( {\dfrac{2}{{\sqrt x - 2}} + \dfrac{3}{{2\sqrt x + 1}} - \dfrac{{5\sqrt x - 7}}{{2x - 3\sqrt x - 2}}} \right)\\
:\dfrac{{2\sqrt x + 3}}{{5x - 10\sqrt x }}\\
= \left( {\dfrac{2}{{\sqrt x - 2}} + \dfrac{3}{{2\sqrt x + 1}} - \dfrac{{5\sqrt x - 7}}{{\left( {\sqrt x - 2} \right)\left( {2\sqrt x + 1} \right)}}} \right)\\
.\dfrac{{5\sqrt x \left( {\sqrt x - 2} \right)}}{{2\sqrt x + 3}}\\
= \dfrac{{2\left( {2\sqrt x + 1} \right) + 3.\left( {\sqrt x - 2} \right) - 5\sqrt x + 7}}{{\left( {\sqrt x - 2} \right)\left( {2\sqrt x + 1} \right)}}\\
.\dfrac{{5\sqrt x \left( {\sqrt x - 2} \right)}}{{2\sqrt x + 3}}\\
= \dfrac{{4\sqrt x + 2 + 3\sqrt x - 6 - 5\sqrt x + 7}}{{2\sqrt x + 1}}.\dfrac{{5\sqrt x }}{{2\sqrt x + 3}}\\
= \dfrac{{2\sqrt x + 3}}{{2\sqrt x + 1}}.\dfrac{{5\sqrt x }}{{2\sqrt x + 3}}\\
= \dfrac{{5\sqrt x }}{{2\sqrt x + 1}}\\
b)A = \dfrac{{5\sqrt x }}{{2\sqrt x + 1}} \in Z\\
\Leftrightarrow 5\sqrt x \vdots \left( {2\sqrt x + 1} \right)\\
\Leftrightarrow 2.5\sqrt x \vdots \left( {2\sqrt x + 1} \right)\\
\Leftrightarrow 5.\left( {2\sqrt x + 1} \right) - 5 \vdots \left( {2\sqrt x + 1} \right)\\
\Leftrightarrow 5 \vdots \left( {2\sqrt x + 1} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
2\sqrt x + 1 = 1\\
2\sqrt x + 1 = 5
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2\sqrt x = 0\\
2\sqrt x = 4
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt x = 0\\
\sqrt x = 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\left( {tm} \right)\\
x = 4\left( {ktm} \right)
\end{array} \right.\\
Vậy\,x = 0
\end{array}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin