Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Giải thích các bước giải:
a.Xét $\Delta ABC,\Delta HBA$ có:
Chung $\hat B$
$\widehat{BAC}=\widehat{AHB}(=90^o)$
$\to \Delta ABC\sim\Delta HBA(g.g)$
$\to \dfrac{AB}{HB}=\dfrac{BC}{BA}$
$\to AB^2=BH\cdot BC$
b.Ta có: $\Delta ABC$ vuông tại $A\to BC=\sqrt{AB^2+AC^2}=25$
Vì $BD$ là phân giác $\hat B$
$\to \dfrac{DA}{DC}=\dfrac{BA}{BC}=\dfrac35$
$\to \dfrac{DA}{DA+DC}=\dfrac3{3+5}$
$\to \dfrac{DA}{AC}=\dfrac38$
$\to AD=\dfrac38AC=\dfrac{15}2$
$\to CD=AC-AD=\dfrac{25}2$
c.Vì $BD$ là phân giác $\hat B, DK\perp BC, DA\perp AB\to DK=DA$
$\to BK=\sqrt{BD^2-KD^2}=\sqrt{BD^2-DA^2}=BA$
Ta có: $AH//KD(\perp BC)$
$\to \dfrac{CK}{HK}=\dfrac{CD}{DA}=\dfrac{BC}{BA}=\dfrac{BC}{BK}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin