

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đây là câu trả lời đã được xác thực
Câu trả lời được xác thực chứa thông tin chính xác và đáng tin cậy, được xác nhận hoặc trả lời bởi các chuyên gia, giáo viên hàng đầu của chúng tôi.
Đáp án:
Giải thích các bước giải:
Đề bài:
Trong mặt phẳng tọa độ Oxy cho hai điểm A(3, 4); B( 6, 0)
Đề bài:
Nhận xét gì về tam giác OAB ? Tính diện tích của tam giác đó.
Lời giải:
Ta có\(OA = \sqrt {{3^2} + {4^2}} = 5\,\,\,;\) \(OB = \sqrt {{6^2} + 0} = 6\,\,;\)
\(AB = \sqrt {{3^2} + {4^2}} = 5\,\)
Vì OA=AB nên tam giác OAB cân tại A.
Gọi I là trung điểm của OB ta có
\(\left\{ \begin{array}{l}
{x_I} = \frac{{6 + 0}}{2} = 3\\
{y_I} = \frac{{0 + 0}}{2} = 0
\end{array} \right. \Rightarrow I\left( {3;0} \right)\)
và \(AI = \sqrt {{{(3 - 3)}^2} + {{(0 - 4)}^2}} = 4\) .
Diện tích tam giác OAB bằng \(S = {1 \over 2}.AI.OB = {1 \over 2}.4.6 = 12\) .
Đề bài:
Viết phương trình đường tròn ngoại tiếp tam giác OAB.
Lời giải:
Đề bài:
Viết phương trình đường phân giác trong tại đỉnh O của tam giác OAB.
Lời giải:
Phương trình các đường phân giác tại đỉnh O của tam giác OAB là:
\(\eqalign{
& {{4x - 3y} \over {\sqrt {{4^2} + {3^2}} }} = \pm {y \over {\sqrt {{0^2} + {1^2}} }}\cr & \Leftrightarrow \,\,\,\left[ \matrix{
4x - 3y = 5y\,\,\,\,\,\,\,({d_1}) \hfill \cr
4x - 3y = - 5y\,\,\,\,({d_2}) \hfill \cr} \right. \cr
& \Leftrightarrow \,\,\,\left[ \matrix{
4x - 8y = 0 \hfill \cr
4x + 2y = 0 \hfill \cr} \right.\cr & \Leftrightarrow \,\,\,\left[ \matrix{
x - 2y = 0 \hfill \cr
2x + y = 0 \hfill \cr} \right. \cr} \)
Với \({d_1}:x - 2y = 0\,\,\) ta có \(({x_A} - 2{y_A})({x_B} - 2{y_B}) = - 5.6 = - 30 < 0\).
Vậy A và B khác phía đối với d1 , do đó d1 là đường phân giác trong góc O của tam giác OAB.
Đề bài:
Viết phương trình đường tròn nội tiếp tam giác OAB.
Lời giải:
Vì tam giác OAB cân tại A nên AI là phân giác trong góc A của tam giác OAB.
Đường thẳng AI đi qua I(3;0) và nhận \(\overrightarrow {AI} = (0; - 4)\) làm VTCP nên nhận (4;0) làm VTPT.
AI: 4(x-3)+0(y-0)=0 hay x = 3 là phương trình đường thẳng AI.
Tọa độ tâm J của đường tròn nội tiếp tam giác OAB là nghiệm hệ phương trình:
\(\left\{ \matrix{
x = 3 \hfill \cr
x - 2y = 0 \hfill \cr} \right.\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
x = 3 \hfill \cr
y = {3 \over 2} \hfill \cr} \right.\)
Vậy \(J\left( {3\,;\,{3 \over 2}} \right)\) .
Bán kính đường tròn nội tiếp tam giác OAB là
\(r = d(J,\,AO) = {{\left| {4.3 - 3.{3 \over 2}} \right|} \over {\sqrt {{3^2} + {4^2}} }} = {3 \over 2}\)
Vậy phương trình đường tròn nội tiếp của tam giác OAB là \({(x - 3)^2} + {\left( {y - {3 \over 2}} \right)^2} = {9 \over 4}\)
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin