

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án + Giải thích các bước giải:
`@` ĐK: `x>=0; x\ne4`
`{:(A=(\sqrt{x}+5)/(2\sqrt{x}-4)),(B=(\sqrt{x})/(\sqrt{x}-2)),(P=A/B):}}`
`=> P=(\sqrt{x}+5)/(2\sqrt{x}-4):(\sqrt{x})/(\sqrt{x}-2)`
`=(\sqrt{x}+5)/(2\sqrt{x}-4).(\sqrt{x}-2)/(\sqrt{x})`
`=(\sqrt{x}+5)/(2\sqrt{x})`
Có: `{:(P==(\sqrt{x}+5)/(2\sqrt{x})),(P^2>P <=> P^2-P>0):}}`
`=>((\sqrt{x}+5)/(2\sqrt{x}))^2 -(\sqrt{x}+5)/(2\sqrt{x})>0`
`<=>(x+10\sqrt{x}+25)/(4x) -(2x+10\sqrt{x})/(4x)>0`
`<=>(x+10\sqrt{x}+25-2x-10\sqrt{x})/(4x)>0`
`<=>(25-x)/(4x)>0`
`<=>25/(4x)-(x)/(4x)>0`
`<=>25/(4x)-(1)/(4)>0`
`<=>25/(4x)>1/4`
`{:(=> x < 25),(KHĐK:x in Z;x>=0; x\ne4):}}`
`=> x=24`
Vậy `x=24` thì `P^2 > P`
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin