

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!

Câu 6
Ta có
$\sin \alpha = \dfrac{3}{5}$
Suy ra
$\cos \alpha = \sqrt{1 - \sin^2\alpha} = \sqrt{1 - \dfrac{9}{25}} = \pm \dfrac{4}{5}$
Do $\dfrac{\pi}{2} < \alpha < \pi$ nên $\cos \alpha < 0$
Vậy $\cos \alpha = -\dfrac{4}{5}$
Vậy
$\tan \left( \alpha + \dfrac{\pi}{3} \right) = \dfrac{\sin \left( \alpha + \frac{\pi}{3} \right)}{\cos \left( \alpha + \frac{\pi}{3} \right)}$
$= \dfrac{\sin \alpha \cos\left( \frac{\pi}{3} \right) + \cos \alpha \sin \left( \frac{\pi}{3} \right)}{\cos \alpha \cos \left( \frac{\pi}{3} \right) - \sin \alpha \sin \left( \frac{\pi}{3} \right)}$
$= \dfrac{\frac{3}{5} . \frac{1}{2} -\frac{4}{5} . \frac{\sqrt{3}}{2} }{-\frac{4}{5}. \frac{1}{2} - \frac{3}{5}.\frac{\sqrt{3}}{2}}$
$= \dfrac{48 - 25\sqrt{3}}{11}$
Câu 7
Ta có
$\sin \alpha = \dfrac{1}{\sqrt{3}}$
Suy ra
$\cos \alpha = \sqrt{1 - \sin^2\alpha} = \sqrt{1 - \dfrac{1}{3}} = \pm \dfrac{\sqrt{6}}{3}$
Do $\dfrac{\pi}{2} > \alpha > 0$ nên $\cos \alpha > 0$
Vậy $\cos \alpha = \dfrac{\sqrt{6}}{3}$
Vậy
\cos \left( \alpha + \dfrac{\pi}{3} \right) = \cos \alpha \cos \left( \dfrac{\pi}{3} \right) - \sin \alpha \sin \left( \dfrac{\pi}{3} \right)$
$= \dfrac{\sqrt{6}}{3} . \dfrac{1}{2} - \dfrac{1}{\sqrt{3}} . \dfrac{\sqrt{3}}{2}$
$= \dfrac{1}{\sqrt{6}} - \dfrac{1}{2}$
Đáp án A.
Hãy giúp mọi người biết câu trả lời này thế nào?
Câu 6.
\[\sin \alpha=\dfrac{3}{5}\] \[\to \cos \alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\dfrac{9}{25}}=±\dfrac{4}{5}\]
\[\dfrac{\pi}{2}<a<\pi\to \cos\alpha < 0\]
\[\to \cos\alpha=-\dfrac{4}{5}\]
\[\to \tan \bigg(a+\dfrac{\pi}{3}\bigg)=\dfrac{\sin \bigg(a+\dfrac{\pi}{3}\bigg)}{\cos \bigg(a+\dfrac{\pi}{3}\bigg)}=\dfrac{\dfrac{3}{5}.\dfrac{1}{2}-\dfrac{4}{5}.\dfrac{\sqrt{3}}{2}}{-\dfrac{4}{5}.\dfrac{1}{2}-\dfrac{3}{5}.\dfrac{\sqrt{3}}{2}}=\dfrac{48-25\sqrt{3}}{11}\]
Câu 7:
\[\sin \alpha=\dfrac{1}{\sqrt{3}}\]
\[\to \cos\alpha =\sqrt{1-\sin^2\alpha}=\sqrt{1-\dfrac{1}{3}}=±\dfrac{\sqrt{6}}{3}\]
\[\dfrac{\pi}{2}>\alpha>0\to \cos \alpha >0\]
\[\to \cos\alpha =\dfrac{\sqrt{6}}{3}\]
\[\to \cos \left( \alpha + \dfrac{\pi}{3} \right) = \cos \alpha \cos \left( \dfrac{\pi}{3} \right) - \sin \alpha \sin \left( \dfrac{\pi}{3} \right)=\dfrac{\sqrt{6}}{3}.\dfrac{1}{2}-\dfrac{1}{\sqrt{3}}.\dfrac{\sqrt{3}}{2}=\dfrac{1}{\sqrt{6}}-\dfrac{1}{2}\]
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin