Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án:
$A=\dfrac1{3^2}+\dfrac1{5^2}+\dfrac1{7^2}\ +\,.\!.\!.+\ \dfrac1{2021^2}\\\Rightarrow A=\underbrace{\dfrac1{2^2}+\dfrac1{3^2}\ +\,.\!.\!.+\ \dfrac1{2021^2}}_{\large A'}-\underbrace{\left(\dfrac1{2^2}+\dfrac1{4^2}\ +\,.\!.\!.+\ \dfrac1{2020^2}\right)}_{\large A''}\\\Rightarrow A'=\dfrac1{2^2}+\dfrac1{3^2}\ +\,.\!.\!.+\ \dfrac1{2021^2}\\\Rightarrow A'<\dfrac1{1.2}+\dfrac1{2.3}\ +\,.\!.\!.+\ \dfrac1{2020.2021}\\\Rightarrow A'<1-\dfrac12+\dfrac12-\dfrac13\ +\,.\!.\!.+\ \dfrac1{2020}-\dfrac1{2021}\\\Rightarrow A'<1-\dfrac1{2021}\\A''=\dfrac1{2^2}+\dfrac1{4^2}\ +\,.\!.\!.+\ \dfrac1{2020^2}\\\Rightarrow A''<\dfrac14+\dfrac1{2.4}\ +\,.\!.\!.+\ \dfrac1{2018.2020}\\\Rightarrow A''<\dfrac14+\dfrac12-\dfrac14\ +\,.\!.\!.+\ \dfrac1{2018}-\dfrac1{2020}\\\Rightarrow A''<\dfrac14+\dfrac12-\dfrac1{2020}\\\Rightarrow A''<\dfrac34-\dfrac1{2020}\\\Rightarrow A=A'-A''<1-\dfrac1{2021}-\left(\dfrac34-\dfrac1{2020}\right)\\\Rightarrow A<1-\dfrac34-\dfrac1{2021}+\dfrac1{2020}\\\Rightarrow A<\dfrac14-\left(\dfrac1{2021}-\dfrac1{2020}\right)\approx \dfrac14\\\Rightarrow A<\dfrac14$
Vậy ta suy ra điều phải chứng minh.
Giải thích các bước giải:
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin