Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án:
\(\begin{array}{l}
a) - \dfrac{{2x}}{{1 - x}}\\
b)\left[ \begin{array}{l}
x = 3\\
x = 2
\end{array} \right.\\
c) - 1 \le x < 1;x \ne \left\{ {0;\dfrac{1}{2}} \right\}
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)DK:x \ne \left( { - 1;0;\dfrac{1}{2};1} \right)\\
P = \left( {\dfrac{{x + 1}}{{3{x^2} + 3x}} + \dfrac{{1 - 2x}}{{6{x^2} - 3x}} - 1} \right):\dfrac{{1 - x}}{{2x}}\\
= \left( {\dfrac{{x + 1}}{{3x\left( {x + 1} \right)}} + \dfrac{{1 - 2x}}{{3x\left( {2x - 1} \right)}} - 1} \right):\dfrac{{1 - x}}{{2x}}\\
= \left( {\dfrac{{x + 1}}{{3x\left( {x + 1} \right)}} - \dfrac{{2x - 1}}{{3x\left( {2x - 1} \right)}} - 1} \right):\dfrac{{1 - x}}{{2x}}\\
= \left( {\dfrac{1}{{3x}} - \dfrac{1}{{3x}} - 1} \right).\dfrac{{2x}}{{1 - x}}\\
= - \dfrac{{2x}}{{1 - x}}\\
b)P = - \dfrac{{2x}}{{1 - x}} = \dfrac{{2x}}{{x - 1}} = \dfrac{{2\left( {x - 1} \right) + 2}}{{x - 1}}\\
= 2 + \dfrac{2}{{x - 1}}\\
P \in Z \to \dfrac{2}{{x - 1}} \in Z\\
\to x - 1 \in U\left( 2 \right)\\
\to \left[ \begin{array}{l}
x - 1 = 2\\
x - 1 = - 2\\
x - 1 = 1\\
x - 1 = - 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 3\\
x = - 1\left( l \right)\\
x = 2\\
x = 0\left( l \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 3\\
x = 2
\end{array} \right.\\
c)P \le 1\\
\to \dfrac{{2x}}{{x - 1}} \le 1\\
\to \dfrac{{2x - x + 1}}{{x - 1}} \le 0\\
\to \dfrac{{x + 1}}{{x - 1}} \le 0\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x + 1 \ge 0\\
x - 1 < 0
\end{array} \right.\\
\left\{ \begin{array}{l}
x + 1 \le 0\\
x - 1 > 0
\end{array} \right.
\end{array} \right.\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x \ge - 1\\
x < 1
\end{array} \right.\\
\left\{ \begin{array}{l}
x \le - 1\\
x > 1
\end{array} \right.\left( l \right)
\end{array} \right.\\
\to - 1 \le x < 1;x \ne \left\{ {0;\dfrac{1}{2}} \right\}
\end{array}\)
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin