Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án:
$\begin{array}{l}
a)Dkxd:x \ge 0;x \ne \dfrac{9}{4}\\
P = \left( {2 - \dfrac{{\sqrt x - 1}}{{2\sqrt x - 3}}} \right):\left( {\dfrac{{6\sqrt x + 1}}{{2x - \sqrt x - 3}} + \dfrac{{\sqrt x }}{{\sqrt x + 1}}} \right)\\
= \dfrac{{4\sqrt x - 6 - \sqrt x + 1}}{{2\sqrt x - 3}}:\dfrac{{6\sqrt x + 1 + \sqrt x \left( {2\sqrt x - 3} \right)}}{{\left( {\sqrt x + 1} \right)\left( {2\sqrt x - 3} \right)}}\\
= \dfrac{{3\sqrt x - 5}}{{2\sqrt x - 3}}.\dfrac{{\left( {\sqrt x + 1} \right)\left( {2\sqrt x - 3} \right)}}{{6\sqrt x + 1 + 2x - 3\sqrt x }}\\
= \dfrac{{3\sqrt x - 5}}{1}.\dfrac{{\sqrt x + 1}}{{2x + 3\sqrt x + 1}}\\
= \dfrac{{\left( {3\sqrt x - 5} \right)\left( {\sqrt x + 1} \right)}}{{\left( {2\sqrt x + 1} \right)\left( {\sqrt x + 1} \right)}}\\
= \dfrac{{3\sqrt x - 5}}{{2\sqrt x + 1}}\\
b)x = \dfrac{{3 - 2\sqrt 2 }}{4} = {\left( {\dfrac{{\sqrt 2 - 1}}{2}} \right)^2}\\
\Leftrightarrow \sqrt x = \dfrac{{\sqrt 2 - 1}}{2}\left( {tm} \right)\\
\Leftrightarrow P = \dfrac{{3\sqrt x - 5}}{{2\sqrt x + 1}} = \dfrac{{3.\dfrac{{\sqrt 2 - 1}}{2} - 5}}{{2.\dfrac{{\sqrt 2 - 1}}{2} + 1}}\\
= \dfrac{{3\sqrt 2 - 3 - 10}}{{2\sqrt 2 - 2 + 2}}\\
= \dfrac{{3\sqrt 2 - 13}}{{2\sqrt 2 }}\\
= \dfrac{{6 - 13\sqrt 2 }}{4}\\
c)P - \dfrac{3}{2}\\
= \dfrac{{3\sqrt x - 5}}{{2\sqrt x + 1}} - \dfrac{3}{2}\\
= \dfrac{{6\sqrt x - 10 - 6\sqrt x - 3}}{{2\left( {2\sqrt x + 1} \right)}}\\
= \dfrac{{ - 13}}{{2\left( {2\sqrt x + 1} \right)}} < 0\\
\Leftrightarrow P < \dfrac{3}{2}
\end{array}$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin