

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!

Đáp án:
\(\begin{array}{l}
a,\\
\left[ \begin{array}{l}
x = \dfrac{\pi }{{18}} + \dfrac{{k2\pi }}{3}\\
x = \dfrac{{5\pi }}{{18}} + \dfrac{{k2\pi }}{3}
\end{array} \right.\,\,\,\,\,\left( {k \in Z} \right)\\
b,\\
\left[ \begin{array}{l}
x = \dfrac{{5\pi }}{{24}} + k\pi \\
x = \dfrac{{13\pi }}{{24}} + k\pi
\end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
c,\\
\left[ \begin{array}{l}
x = \dfrac{{7\pi }}{{24}} + k\pi \\
x = - \dfrac{\pi }{{24}} + k\pi
\end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
d,\\
x = \dfrac{\pi }{8} + \dfrac{1}{2}\arctan \dfrac{1}{2} + \dfrac{{k\pi }}{2}\,\,\,\,\,\left( {k \in Z} \right)\\
e,\\
x = \dfrac{{7\pi }}{{12}} + k\pi \,\,\,\,\left( {k \in Z} \right)
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
2\sin 3x - 1 = 0\\
\Leftrightarrow \sin 3x = \dfrac{1}{2}\\
\Leftrightarrow \sin 3x = \sin \dfrac{\pi }{6}\\
\Leftrightarrow \left[ \begin{array}{l}
3x = \dfrac{\pi }{6} + k2\pi \\
3x = \pi - \dfrac{\pi }{6} + k2\pi
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
3x = \dfrac{\pi }{6} + k2\pi \\
3x = \dfrac{{5\pi }}{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{\pi }{{18}} + \dfrac{{k2\pi }}{3}\\
x = \dfrac{{5\pi }}{{18}} + \dfrac{{k2\pi }}{3}
\end{array} \right.\,\,\,\,\,\left( {k \in Z} \right)\\
b,\\
2\sin \left( {2x - \dfrac{\pi }{4}} \right) - 1 = 0\\
\Leftrightarrow \sin \left( {2x - \dfrac{\pi }{4}} \right) = \dfrac{1}{2}\\
\Leftrightarrow \sin \left( {2x - \dfrac{\pi }{4}} \right) = \sin \dfrac{\pi }{6}\\
\Leftrightarrow \left[ \begin{array}{l}
2x - \dfrac{\pi }{4} = \dfrac{\pi }{6} + k2\pi \\
2x - \dfrac{\pi }{4} = \pi - \dfrac{\pi }{6} + k2\pi
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
2x - \dfrac{\pi }{4} = \dfrac{\pi }{6} + k2\pi \\
2x - \dfrac{\pi }{4} = \dfrac{{5\pi }}{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \dfrac{{5\pi }}{{12}} + k2\pi \\
2x = \dfrac{{13\pi }}{{12}} + k2\pi
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{5\pi }}{{24}} + k\pi \\
x = \dfrac{{13\pi }}{{24}} + k\pi
\end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
c,\\
2\cos \left( {2x - \dfrac{\pi }{4}} \right) - 1 = 0\\
\Leftrightarrow \cos \left( {2x - \dfrac{\pi }{4}} \right) = \dfrac{1}{2}\\
\Leftrightarrow \cos \left( {2x - \dfrac{\pi }{4}} \right) = \cos \dfrac{\pi }{3}\\
\Leftrightarrow \left[ \begin{array}{l}
2x - \dfrac{\pi }{4} = \dfrac{\pi }{3} + k2\pi \\
2x - \dfrac{\pi }{4} = - \dfrac{\pi }{3} + k2\pi
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
2x = \dfrac{{7\pi }}{{12}} + k2\pi \\
2x = - \dfrac{\pi }{{12}} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{7\pi }}{{24}} + k\pi \\
x = - \dfrac{\pi }{{24}} + k\pi
\end{array} \right.\,\,\,\,\left( {k \in Z} \right)\\
d,\\
DKXD:\,\,\,\cos \left( {2x - \dfrac{\pi }{4}} \right) \ne 0\\
\Leftrightarrow 2x - \dfrac{\pi }{4} \ne \dfrac{\pi }{2} + k\pi \Leftrightarrow x \ne \dfrac{{3\pi }}{8} + \dfrac{{k\pi }}{2}\,\,\,\,\left( {k \in Z} \right)\\
2\tan \left( {2x - \dfrac{\pi }{4}} \right) - 1 = 0\\
\Leftrightarrow \tan \left( {2x - \dfrac{\pi }{4}} \right) = \dfrac{1}{2}\\
\Leftrightarrow 2x - \dfrac{\pi }{4} = \arctan \dfrac{1}{2} + k\pi \\
\Leftrightarrow 2x = \dfrac{\pi }{4} + \arctan \dfrac{1}{2} + k\pi \\
\Leftrightarrow x = \dfrac{\pi }{8} + \dfrac{1}{2}\arctan \dfrac{1}{2} + \dfrac{{k\pi }}{2}\,\,\,\,\,\left( {k \in Z} \right)\\
e,\\
DKXD:\,\,\sin \left( {x - \dfrac{\pi }{4}} \right) \ne 0 \Leftrightarrow x - \dfrac{\pi }{4} \ne k\pi \Leftrightarrow x \ne \dfrac{\pi }{4} + k\pi \,\,\,\left( {k \in Z} \right)\\
\sqrt 3 \cot \left( {x - \dfrac{\pi }{4}} \right) - 1 = 0\\
\Leftrightarrow \cot \left( {x - \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 3 }}\\
\Leftrightarrow x - \dfrac{\pi }{4} = \dfrac{\pi }{3} + k\pi \\
\Leftrightarrow x = \dfrac{{7\pi }}{{12}} + k\pi \,\,\,\,\left( {k \in Z} \right)
\end{array}\)
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin