

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
`~rai~`
\(C_{n+1}^k=C_n^k+C_n^{k-1}\\\text{Xét VT=}C_{n+1}^k=\dfrac{(n-1)!}{k!(n+1-k)!}=\dfrac{(n+1)!}{k!(n-k+1)!}.\quad(1)\\\text{+)VP=}C_n^k+C_n^{k-1}\\\quad\quad=\dfrac{n!}{k!(n-k)!}+\dfrac{n!}{(k-1)!.(n-k+1)!}\\\quad\quad=\dfrac{n!}{k(k-1)!(n-k)!}+\dfrac{n!}{(k-1)!(n-k+1)(n-k)!}\\\quad\quad=\dfrac{n!(n-k+1)}{k(k-1)!(n-k+1)(n-k)!}+\dfrac{n!.k}{k(k-1)!(n-k+1)(n-k)!}\\\quad\quad=\dfrac{n!(n-k+1)+n!.k}{k(k-1)!(n-k+1)(n-k)!}\\\quad\quad=\dfrac{n!(n-k+1+k)}{k!(n-k+1)!}\\\quad\quad=\dfrac{n!(n+1)}{k!(n-k+1)!}\\\quad\quad=\dfrac{(n+1)!}{k!(n-k+1)!}.\quad(2)\\\text{Từ (1) và (2)}\Rightarrow VT=VP.\\\Rightarrow C_{n+1}^k=C_n^k+C_n^{k-1}.(đpcm)\)
Hãy giúp mọi người biết câu trả lời này thế nào?

Bảng tin