

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!

Giải thích các bước giải:
e.ĐKXĐ: $x\ne 2, 4$
Ta có:
$\dfrac{x-3}{x-2}-\dfrac{x-2}{x-4}=1\dfrac{5}{21}$
$\to \dfrac{x-2-1}{x-2}-\dfrac{x-4+2}{x-4}=\dfrac{26}{21}$
$\to 1-\dfrac{1}{x-2}-(1+\dfrac{2}{x-4})=\dfrac{26}{21}$
$\to -\dfrac{1}{x-2}-\dfrac{2}{x-4}=\dfrac{26}{21}$
$\to -21\left(x-4\right)-42\left(x-2\right)=26\left(x-2\right)\left(x-4\right)$
$\to -63x+168=26x^2-156x+208$
$\to 26x^2-93x+40=0$
$\to (26x^2-13x)-(80x-40)=0$
$\to 13x(2x-1)-40(2x-1)=0$
$\to (13x-40)(2x-1)=0$
$\to 13x-40=0\to x=\dfrac{40}{13}$
Hoặc $2x-1=0\to 2x=1\to x=\dfrac12$
l.Ta có:
$\dfrac{x-1}{x+1}-\dfrac{x^2+x-2}{x+1}=\dfrac{x+1}{x-1}-x-2$
$\to \dfrac{x-1}{x+1}-\dfrac{x(x+2)-(x+2)}{x+1}=\dfrac{x+1}{x-1}-x-2$
$\to \dfrac{x-1}{x+1}-\dfrac{(x-1)(x+2)}{x+1}=\dfrac{x+1}{x-1}-x-2$
$\to \dfrac{x-1-(x-1)(x+2)}{x+1}=\dfrac{x+1}{x-1}-x-2$
$\to \dfrac{(x-1)(1-(x+2))}{x+1}=\dfrac{x+1}{x-1}-x-2$
$\to \dfrac{(x-1)(-(x+1))}{x+1}=\dfrac{x+1}{x-1}-x-2$
$\to -(x-1)=\dfrac{x+1}{x-1}-x-2$
$\to -x+1=\dfrac{x+1}{x-1}-x-2$
$\to \dfrac{x+1}{x-1}=3$
$\to x+1=3(x-1)$
$\to x+1=3x-3$
$\to 2x=4$
$\to x=2$
Hãy giúp mọi người biết câu trả lời này thế nào?
Đáp án:
`e,`
\(\left[ \begin{array}{l}x=\dfrac{1}{2}\\x=\dfrac{40}{13}\end{array} \right.\)
`l,`
`x=1`
Giải thích các bước giải:
`e,\frac{x-3}{x-2}-\frac{x-2}{x-4}=\frac{26}{21}`
`=>\frac{(x-3)(x-4)-(x-2)^2}{(x-2)(x-4)}=\frac{26}{21}`
`=>\frac{x^2-7x+12-x^2+4x-4}{x^2-6x+8}=\frac{26}{21}`
`=>21(8-3x)=26(x^2-6x+8)`
`=>168-63x=26x^2-156x+208`
`=>26x^2-93x+40=0`
`=>26x^2-13x-80x+40=0`
`=>13x(2x-1)-40(2x-1)=0`
`=(2x-1)(13x-4)=0`
\(\Rightarrow \left[ \begin{array}{l}x=\dfrac{1}{2}\\x=\dfrac{40}{13}\end{array} \right.\)
`l,`
`\frac{x-1}{x+1}-\frac{x^2+x-2}=\frac{x+1}{x-1}-x-2`
`=>\frac{1-x^2}{x+1}=\frac{x+1}{x-1}-x-2`
`=>\frac{(1-x)(1+x)}{x+1}+x+2=\frac{x+1}{x-1}`
`=>1-x+x+2=\frac{x+1}{x-1}`
`=>3(x-1)=x+1`
`=>2x=2`
`=>x=1`
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin