

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!

Đáp án: $1$
Giải thích các bước giải:
Đặt $4321^{1234}=A$
Ta có $4321$ chia $3$ dư $1$
$\to 4321^{1234}$ chia $3$ dư $1$
$\to A$ chia $3$ dư $1$
$\to A=3k+1, k\in N$
Lại có $4321$ chia $2$ dư $1$
$\to 4321^{1234}$ chia $2$ dư $1$
$\to A=2q+1, q\in N$
$\to 3k+1=2q+1$
$\to 3k=2q$
$\to 3k\quad\vdots\quad 2$
$\to k\quad\vdots\quad 2$
$\to k=2m$
$\to A=3\cdot 2m+1$
$\to A=6m+1$
$\to A$ chia $6$ dư $1$
Ta có:
$A=a_1+a_2+...+a_n$
$\to T=a_1^3+a_2^3+...+a_n^3$
Trừ vế cho vế
$\to T-A=(a_1^3-a_1)+(a_2^3-a_2)+...+(a_n^3-a_n)$
Ta có:
$y^3-y=y(y^2-1)=y(y-1)(y+1)=(y-1)y(y+1)$
Vì $y-1, y, y+1$ là $3$ số tự nhiên liên tiếp
$\to (y-1)y(y+1)\quad\vdots\quad 2,3$
$\to (y-1)y(y+1)\quad\vdots\quad 2\cdot 3$ vì $(2,3)=1$
$\to (y-1)y(y+1)\quad\vdots\quad 6$
$\to y^3-y\quad\vdots\quad 6$
$\to a_1^3-a_1, a_2^3-a_2, ..., a_n^3-a_n\quad\vdots\quad 6$
$\to T-A\quad\vdots\quad 6$
$\to T-A=6x$
$\to T=A+6x$
$\to T=6m+1+6x$
$\to T$ chia $6$ dư $1$
Hãy giúp mọi người biết câu trả lời này thế nào?

Bảng tin
0
55
0
quasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhh Rút gọnquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhhquasssssssss sf hghhhhhhhhhh... xem thêm