Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án: $Q=6$
Giải thích các bước giải:
Ta có
$\begin{cases}a^3+1=3a\\ b^3+1=3b\\ c^3+1=3c\end{cases}$
$\to a,b,c$ là nghiệm của phương trình
$t^3+1=3t$
$\to t^3-3t+1=0$
$\to \begin{cases}a+b+c=-\dfrac{0}{1}=0\\ ab+bc+ca=-\dfrac31=-3\\ abc=\dfrac11=1\end{cases}$
Ta có:
$Q=a^2+b^2+c^2$
$\to Q=(a+b+c)^2-2(ab+bc+ca)$
$\to Q=0^2-2\cdot (-3)$
$\to Q=6$
Hãy giúp mọi người biết câu trả lời này thế nào?
Đáp án:
Giải thích các bước giải: Tham khảo:
$a, b, c$ đôi một khác nhau$ ⇔ a -b; b - c, c - a \neq0$
$a³ + 1 = 3a (1); b³ + 1 = 3b (2); c³ + 1 = 3c (3)$
$(1) - (2) : a³ - b³ = 3(a - b) $
$ ⇔ (a - b)(a² + ab + b²) = 3(a - b)$
$ ⇔ a² + ab + b² = 3 (4)$( vì $a - b\neq0$)
Tương tự $:(2) - (3); (3) - (1)$ có:
$ b² + bc + c² = 3 (5)$
$ c² + ca + a² = 3 (6)$
$(4) + (5) + (6) : 2(a² + b² + c²) + ab + bc + ca = 9$
$ ⇔ 4(a² + b² + c²) + 2(ab + bc + ca) = 18 (*)$
Mặt khác $ :(4) - (5) : a² - c² + ab - bc = 0$
$ ⇔ (a - c)(a + c) + b(a - c) = 0$
$ ⇔ (a - c)(a + b + c) = 0$
$ ⇔ a + b + c = 0$ ( vì $a - c\neq0$)
$ ⇔ (a + b + c)² = 0$
$ ⇔ a² + b² + c² + 2(ab + bc + ca) = 0 (**)$
$(*) - (**): 3(a² + b² + c²) = 18 $
$ ⇔ Q = a² + b² + c² = 6$
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin