

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
a) $\sin x - \sin2x +\sin3x -\sin4x = 0$
$\to (\sin x +\sin3x) -(\sin2x +\sin4x) = 0$
$\to 2\sin2x.\cos x - 2\sin3x.\cos x = 0$
$\to \cos x(\sin2x -\sin3x) = 0$
$\to \left[\begin{array}{l}\cos x = 0\\\sin2x =\sin3x\end{array}\right.$
$\to \left[\begin{array}{l}x =\dfrac{\pi}{2} + k\pi\\2x = 3x +k2\pi\\2x = \pi - 3x + k2\pi\end{array}\right.$
$\to \left[\begin{array}{l}x =\dfrac{\pi}{2} + k\pi\\x =k2\pi\\x = \dfrac{\pi}{5}+ k\dfrac{2\pi}{3}\end{array}\right.\quad (k\in\Bbb Z)$
b) $\sin2x -\sqrt3\cos2x =\sqrt3 -2\cos x$
$\to 2\sin x\cos x + 2\cos x - \sqrt3(1-2\sin^2x - \sqrt3 = 0$
$\to 2\cos x(\sin x +1) - \sqrt3(1-2\sin^2x + 1) = 0$
$\to \cos x(\sin x +1) - \sqrt3(1 - \sin^2x) = 0$
$\to \cos x(\sin x +1) + \sqrt3(\sin x+1)(\sin x -1) = 0$
$\to (\sin x+1)(\cos x + \sqrt3\sin x - \sqrt3 )=0$
$\to \left[\begin{array}{l}\sin x +1 = 0\\\cos x +\sqrt3\sin x =\sqrt3\end{array}\right.$
$\to \left[\begin{array}{l}\sin x = -1\\\dfrac12\cos x +\dfrac{\sqrt3}{2}\sin x =\dfrac{\sqrt3}{2}\end{array}\right.$
$\to \left[\begin{array}{l} x = -\dfrac{\pi}{2} + k2\pi\\\sin\left(x + \dfrac{\pi}{6}\right) =\sin\dfrac{\pi}{3}\end{array}\right.$
$\to \left[\begin{array}{l}x =-\dfrac{\pi}{2} + k2\pi\\x +\dfrac{\pi}{6} =\dfrac{\pi}{3} + k2\pi\\x + \dfrac{\pi}{6} =\dfrac{2\pi}{3} + k2\pi\end{array}\right.$
$\to \left[\begin{array}{l}x =-\dfrac{\pi}{2} + k2\pi\\x =\dfrac{\pi}{6} + k2\pi\\x =\dfrac{\pi}{2} + k2\pi\end{array}\right.$
$to \left[\begin{array}{l}x =\dfrac{\pi}{2} + k\pi\\x =\dfrac{\pi}{6} + k2\pi\end{array}\right.\quad (k\in\Bbb Z)$
Hãy giúp mọi người biết câu trả lời này thế nào?
`a) sin x - sin 2x + sin 3x - sin 4x = 0`
`-> (sin x - sin 4x) - (sin 2x - sin 3x) = 0`
`-> 2.cos ((5x)/2).sin (-(3x)/2) - 2.cos ((5x)/2).sin (-x/2) = 0`
`-> 2cos ((5x)/2)[sin ((-3x)/2 - sin (-x/2)] = 0`
`->` \(\left[ \begin{array}{l}2cos \dfrac{5x}{2} = 0\\sin \dfrac{-3x}{2} = sin \dfrac{-x}{2}\end{array} \right.\)
`->` \(\left[ \begin{array}{l}\dfrac{5x}{2} = \dfrac{\pi}{2} + k\pi\\\dfrac{-3x}{2} = \dfrac{-x}{2} + k2\pi\\\dfrac{-3x}{2} = \pi + \dfrac{x}{2} + k2\pi\end{array} \right.\)
`->` \(\left[ \begin{array}{l}x = \dfrac{\pi}{5} + k\dfrac{2\pi}{5}\\x = k2\pi\\x = \dfrac{-\pi}{2} + k4\pi\end{array} \right.\) `(k in ZZ)`
`b) sin 2x - sqrt{3}cos 2x = sqrt{3} - 2cos x`
`-> 2sin x.cos x + 2cos x - sqrt{3}(1 - 2sin^2 x) - sqrt{3} = 0`
`-> 2cos x(sin x + 1) - sqrt{3}(1 - 2sin^2 x + 1) = 0`
`-> 2[cos x(sin x + 1) + sqrt{3}(sin^2 x - 1) = 0`
`-> cos x(sin x + 1) + sqrt{3}(sin x + 1)(sin x - 1) = 0`
`-> (sin x + 1)(sqrt{3}sin x - sqrt{3} + cos x) = 0`
`->` \(\left[ \begin{array}{l}sin x = -1\\\sqrt{3}sin x + cos x = \sqrt{3}\end{array} \right.\)
`->` \(\left[ \begin{array}{l}x = \dfrac{-\pi}{2} + k\pi\\\dfrac{\sqrt{3}}{2}sin x + \dfrac{1}{2}cos x = \dfrac{\sqrt{3}}{2}\end{array} \right.\)
`->` \(\left[ \begin{array}{l}x = \dfrac{-\pi}{2} + k\pi\\sin (x + \dfrac{\pi}{6}) = \dfrac{\sqrt{3}}{2}\end{array} \right.\)
`->` \(\left[ \begin{array}{l}x = \dfrac{-\pi}{2} + k\pi\\x + \dfrac{\pi}{6} = \dfrac{\pi}{3} + k2\pi\\x + \dfrac{\pi}{6} = \dfrac{2\pi}{3} + k2\pi\end{array} \right.\)
`->` \(\left[ \begin{array}{l}x = x = \dfrac{-\pi}{2} + k\pi\\x = \dfrac{\pi}{6} + k2\pi\\x = \dfrac{\pi}{2} + k2\pi\end{array} \right.\) `(k in ZZ)`
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin
0
0
0
Lỗi kìa ạ
19
371
7
https://hoidap247.com/cau-hoi/1398370
19
371
7
https://hoidap247.com/cau-hoi/1398370#cmt_question_1398370
19
371
7
https://hoidap247.com/cau-hoi/1398370#cmt_question_1398370