

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án:
$m = \pm 2$
Giải thích các bước giải:
$y = x^3 - 3mx^2 + 3(m^2 -1)x - m^3 + m$
$TXD: D =\Bbb R$
$y' = 3x^2 - 6mx + 3(m^2 -1)$
Hàm số có cực trị $\Leftrightarrow \Delta_{y'}' > 0$
$\Leftrightarrow (3m)^2 - 9(m^2 -1) > 0$
$\Leftrightarrow 9 > 0$ (luôn đúng)
$\to $ Hàm số luôn có cực trị
Hàm số có 2 điểm cực trị $x_1;x_2$ là nghiệm của $y' = 0$
Áp dụng định lý Vi-ét ta được:
$\begin{cases}x_1 + x_2 = 2m\\x_1x_2 = m^2 -1\end{cases}$
Ta có: $x_1^2 + x_2^2 - x_1x_2 = 7$
$\Leftrightarrow (x_1 + x_2)^2 - 3x_1x_2 = 7$
$\Leftrightarrow (2m)^2 - 3(m^2 - 1) = 7$
$\Leftrightarrow m^2 + 3 = 7$
$\Leftrightarrow m^2 = 4$
$\Leftrightarrow m = \pm 2$
Hãy giúp mọi người biết câu trả lời này thế nào?
Đáp án:
m=±2m=±2
Giải thích các bước giải:
y=x3−3mx2+3(m2−1)x−m3+my=x3−3mx2+3(m2−1)x−m3+m
TXD:D=RTXD:D=R
y′=3x2−6mx+3(m2−1)y′=3x2−6mx+3(m2−1)
Hàm số có cực trị ⇔Δ′y′>0⇔Δy′′>0
⇔(3m)2−9(m2−1)>0⇔(3m)2−9(m2−1)>0
⇔9>0⇔9>0 (luôn đúng(
→→ Hàm số luôn có cực trị
Hàm số có 2 điểm cực trị x1;x2x1;x2 là nghiệm của y′=0y′=0
Áp dụng định lý Vi-ét ta được:
{x1+x2=2mx1x2=m2−1{x1+x2=2mx1x2=m2−1
Ta có: x21+x22−x1x2=7x12+x22−x1x2=7
⇔(x1+x2)2−3x1x2=7⇔(x1+x2)2−3x1x2=7
⇔(2m)2−3(m2−1)=7⇔(2m)2−3(m2−1)=7
⇔m2+3=7⇔m2+3=7
⇔m2=4⇔m2=4
⇔m=±2⇔m=±2
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin
0
50
0
tại sao ở dòng thứ 5 từ dưới lên lại có 3*x1x2 vậy ạ ?