

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!

Đáp án:${S_n} = \frac{n}{{2n + 1}}$
Giải thích các bước giải:
$\begin{array}{l}
{S_n} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + ... + \frac{1}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}}\\
\Rightarrow 2{S_n} = \frac{2}{{1.3}} + \frac{2}{{3.5}} + ... + \frac{2}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}}\\
= \frac{{3 - 1}}{{1.3}} + \frac{{5 - 3}}{{3.5}} + ... + \frac{{\left( {2n + 1} \right) - \left( {2n - 1} \right)}}{{\left( {2n - 1} \right)\left( {2n + 1} \right)}}\\
= 1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + ... + \frac{1}{{2n - 1}} - \frac{1}{{2n + 1}}\\
= 1 - \frac{1}{{2n + 1}} = \frac{{2n}}{{2n + 1}}\\
\Rightarrow {S_n} = \frac{1}{2}.\frac{{2n}}{{2n + 1}} = \frac{n}{{2n + 1}}
\end{array}$
Hãy giúp mọi người biết câu trả lời này thế nào?

Bảng tin
3
95
2
cho mình hỏi 2Sn là ở đâu ra
27405
339918
15827
nhân cả 2 vế với 2
3
95
2
cho hình chóp S.ABCD,G,H là trọng tâm tam giác SAB và SCD.tìm giao tuyến a,(SGH) ∩(ABCD) b,(SGH) ∩(SBD) c,(BHG) ∩(SAC) d,(BHG) ∩(SAD) giúp mình câu này với