

Hãy luôn nhớ cảm ơn và vote 5*
nếu câu trả lời hữu ích nhé!
Đáp án:
Giải thích các bước giải:
1)$\sin ^{2}x+\sin ^{2}3x=\cos ^{2}2x+\cos ^{2}4x$
$\Leftrightarrow \frac{1-\cos 2x}{2}+\frac{1-\cos 6x}{2}=\frac{1+\cos 4x}{2}+\frac{1+\cos 8x}{2}$
$\Leftrightarrow \cos 8x+\cos 2x+\cos 6x+\cos 4x=0$
$\Leftrightarrow 2\cos 5x\cos 3x+2\cos 5x\cos x=0\Leftrightarrow \cos 5x.(\cos 3x+\cos x)=0$
$\Leftrightarrow $
$\left.\begin{matrix}
& \\ \cos 5x=0
& \\ \cos 3x+\cos x=0
&
\end{matrix}\right|$
$\left.\begin{matrix}
& \\ 5x=\frac{\pi }{2}+k\pi
& \\ \cos 3x-\cos (x+\pi )=0
&
\end{matrix}\right|$
$\left.\begin{matrix}
& \\ x=\frac{\pi }{10}+k\frac{\pi }{5}
& \\ 3x=\pm (x+\pi )+k2\pi
&
\end{matrix}\right|$
$\left.\begin{matrix}
& \\ x=\frac{\pi }{10}+k\frac{\pi }{5}
& \\ x=\frac{\pi }{2}+k\pi
& \\ x=-\frac{\pi }{4}+k\frac{\pi }{2}
&
\end{matrix}\right|$
k$\epsilon $Z
3)$\sin ^{2}x+\sin ^{2}3x-3\cos ^{2}2x=0$
$\Leftrightarrow \frac{1-\cos 2x}{2}+\frac{1-\cos 6x}{2}-3.\frac{1+\cos 4x}{2}=0$
$\Leftrightarrow \cos 2x+\cos 6x+3\cos 4x-1=0$
$\Leftrightarrow 2\cos 4x\cos 2x+3\cos 4x-1=0$
$\Leftrightarrow 2(2\cos ^{2}2x-1)\cos 2x+3(2\cos ^{2}2x-1)-1=0$
$\left.\begin{matrix}
& \\ \cos 2x=-1
& \\ \cos 2x=-\frac{1}{4} \pm \frac{\sqrt{17}}{4}
&
\end{matrix}\right|$
$\left.\begin{matrix}
& \\ x=\frac{-\pi }{2}+k\pi
& \\ x=\pm \frac{\arccos (-\frac{1}{4}+\frac{\sqrt{17}}{4})}{2}+k\pi
& \\ x=\pm \frac{\arccos (-\frac{1}{4}-\frac{\sqrt{17}}{4})}{2}+k\pi
&
\end{matrix}\right|$
k$\epsilon $Z
16)$\sin ^{3}x\cos 3x+\cos ^{3}x\sin 3x=\sin ^{2}4x$
$\Leftrightarrow \cos 3x.\frac{3\sin x-\sin 3x}{4}+\sin 3x.\frac{3\cos x+\cos 3x}{4}=\sin ^{2}4x$
$\Leftrightarrow 3(\sin x\cos 3x+\sin 3x\cos x)+\sin 3x\cos 3x-\cos 3x\sin 3x=4\sin ^{2}4x$
$\Leftrightarrow 3\sin 4x=4\sin ^{2}4x$
$\Leftrightarrow \sin 4x(4\sin 4x-3)=0$
$\left.\begin{matrix}
& \\ \sin 4x=0
& \\ \sin 4x=\frac{3}{4}
&
\end{matrix}\right|$
$\left.\begin{matrix}
& \\ x=k\frac{\pi }{4}
& \\ x=\frac{\arcsin \frac{3}{4}}{4}+k\frac{\pi }{2}
& \\ x=\frac{\pi }{4}-\frac{\arcsin \frac{3}{4}}{4}+k\frac{\pi }{2}
&
\end{matrix}\right|$
k$\epsilon $Z
Hãy giúp mọi người biết câu trả lời này thế nào?
Bảng tin